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SCOPE AND PURPOSE

It is typically very difficult to obtain waiting-time distribution
functions for non-Markovian, general single-server queues. It has long been
recognized that virtually any probability density (such as for service times)
can be approximated quite accurately by a linear combination of exponential
density functions. Fortunately, when such forms can be assumed to describe
interarrival and service times, classical results from the theory of queues
permit the solution of the waiting-time problem for the general queue.
However, there have been no good computer-based algorithms available until
recently for determining appropriate mixed exponential densities to fit data
or closely approximate another non-standard density. The subject of this work
then is the adaptation of a special nonlinear optimization routine for
generalized mixture estimation and its use in calculating very accurate

approximations for the delay distribution of any general single-server queue.
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I. INTRODUCTION

In a recent paper, Fredericks (1982) offered a class of approximations
for the GI/G/1 stationary waiting-time distribution function (CDF), Wq(t).
The main idea there was to assumg a specific form for Wq(t) and then to use
the Lindley integral equation to obtain estimates of the parameters.

The primary form used for the approximant was the exponential

-at
W t =1 - Ce

and then numerous ways were documented for the estimation of C and a. How-
ever, presetting the form of Wq(t) leads to complications when more complex
functional forms are tried, and this approach does not generally portray a
waiting-time CDF in an accurate way over its full range. Fredericks also
mentioned the mixed exponential as another possible form for wq(t) in light of
its common appearance as a waiting-time distribution.1 This gave a more
precise approximation, but other problems then surfaced.

However, there is an entirely different way to look at the problem which
has some precedence in the literature, and which often provides both a special
insight into the underlying queue mechanisms and a most accurate way of
assessing the waiting times. We suggest looking instead at the interarrival
and service-time distributions defining the GI/G/1 as the candidates for the

approximation, such that the final form of Wq(t) is a member of a very

1By mixed exponential, we mean that the complementary CDF l-wq(t) may be

written as a linear combination of exponential functions with possibly complex
powers. In its most general form, the (possibly complex) linear combination
need not be convex and the constants could be mixed positive and negative.
And, of course, the exponents should have negative real parts. See Dehon and
Latouche (1982) for an expanded and up-to-date discussion of this class of
distribution functions.
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comprehensive family of CDFs, namely, the mixed exponentials. So we present a
way to approximate which guarantees that the waits turn out to be mixed
exponentially distributed.

The primary motivation for our alternative approach is previous work of
Smith (1953), and Marchal and Harris (1976). The major relevant result of
Smith was his Theorem 4, in which some quite general sufficient conditions
were presented for the GI/G/1 waiting times to have a mixed exponential
distribution. Marchal and Harris built on this result and some others of
Smith to offer a relatively simple mixed-exponential approximation of W _(t)
derived by fitting the difference of the service and interarrival time random

variables by a difference of two Erlang variables.
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II. NOTATION AND BACKGROUND MATERIAL

The fundamental results for the GI/G/1 may be found, for example, in
Gross and Harris (1974), Chapter 6. It was noted there that the GI/G/1
problem can be greatly simplified if it may be assumed that both interarrival
and service distributions are generalized Erlangs (GE) expressed as con-
volutions of independent and not-necessarily-identical exponential random
variables. When the means of such exponentials are allowed to come in conju-
gate pairs (so that their Laplace-Stieltjes transforms are inverse poly-
nomials), Smith calls the family-Kn (with n the degree of the defining poly-
nomial). Other authors (e.g., Cohen, 1982) define Kn as the class of dis-
tributions whose transforms are rational functions (clearly including the
inverse polynomials); but we shall instead call these Rn (with n the degree of
the denominator's polynomial). The Kn class includes all regular Erlangs, but
not all mixed exponentials and mixed Erlangs, which are however members of Rn'
We also mention the generalized phase-type distributions (PH) popularized by
Neuts and others (see Neuts, 1981), which have rational transforms as well,
though not necessarily of the inverse polynomial form. Thus we may
symbolically represent the relationship of those respective families as
GEC KnC Rn and PHC Rn'

Now, under a double Krl assumption (i.e., that the queue is Km/Kn/l), it

turns out that the delay CDF is (for example, see Gross and Harris)

n z t
Wq(t) =1+ ii] kie s (n

where the {ki) and {zi) would be determined in the usual way (as in Gross and

Harris). The (ki} are arbitrary in sign, while the {zi} have negative real

parts. A completely parallel result exists for distributions in Rn'
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Importantly, Smith also showed that a comparable result follows even for

arbitrary interarrival times. That is, the GI/Kn/I and GI/Rnll queues have

mixed exponential waits independent of the form of GI. And therein lies the
key to our approximation method: the interarrival and service CDFs are the

functions of concern.

So our approach is built around the approximation of the service dis-

- "_l“"“‘"l'll‘

tribution by a member of either the class Kn or R Since Rn is the more
general class and includes Kn, we focus on selecting from amongst its members.
More precisely, we work with a subset of the class Rn made up of those !
rational functions whose denominators have real roots, and call this class GH
for "generalized hyperexponential."2

It is most important to recégnize that GH is a very complete set of
potential approximants even without the use of complex scale parameters. The
most critical characterization of this coverage is the fact that all functions
in L2(0,-) can be approximated arbitrarily closely by a finite linear com-

¢t + 3

bination of functions of the form e , ¢eR .

(For example, see Naylor and
Sell, 1971, for a discussion of this and related problems on the Hilbert space
of square integrable functions.)

So the distribution selection problem is that of describing the proba-

bility structure of the service times by a density of the form

K
)

i=1

b(t) =

aissdion oo uin eI,

%Note that the class GHGE and that GHC PH.

3Indeed, the classes, GH, PH and Rn are each dense in the set of all CDFs

on the nonnegative reals.
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either from data or as an approximation to an actual available density
" function whose form is awkward. If we indeed have raw data, then our problem
is just one of parameter estimation. Otherwise, we have a curve fitting prob-
lem, which in turn can be converted to an estimation problem by picking a
large number of the function's points and then proceeding with the maximum-
likelihood estimation (MLE). The recommended approach for this selection is
based on a nonlinear optimization routine previously developed for the MLE of

mixed Weibull parameters. It is presented in the next section.




IIT. METHOD FOR SERVICE DENSITY APPROXIMATION

The numerical procedure for estimation has been built up from previous
work on exponential and Weibull mixtures. To illustrate, let us assume that
the data sampling is complete so that all service times are fully observed.
In the event that there are incomplete data observations, the algorithm is
easily altered.

Maximum-likelihood estimation is the method selected mainly because,
under fairly general conditions, it enjoys the important limiting statistical
properties of efficiency, normality, and unbiasedness. Furthermore, the MLEs
are consistent, invariant, and are functions of sufficient statistics if they
exist. When sufficiency and unbiasedness both hold, the MLEs are also of
minimum variance.

A first key observation is that it is not possible to obtain explicit
formulas for the maximum-likelihood estimators of parameters involved in mixed
exponential densities by taking the partial derivatives and equating them to
zero. Hence we must resort to other optimization methods and numerical
techniques. Furthermore, we need to take into account a set of constraints in
addition to the objective function. The mixing proportions and scale
parameters must satisfy some simple linear relationships and there may exist
other constraints related to the sub-population parameters. Note that the
constraints are generally of a linear type; hence the problem can be described
as a mathematical program with a nonlinear objective function and linear
constraints.

The target criterion function in the maximum-likelihood problem is the
joint density function for a random sample from the (mixed) population

governed by b(t). As is ¢ 'mmon, it is much easier in this situation to work
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with the logarithm of the likelihood function. Thus if we write the likeli-

hood for the random sample tl,...,tN as
N N K -¢.ti
L@) = K b(tie)= NI I ¥ge ] (5)
i=1 i=1 j=1 3

where a is the vector of parameters (which may include K), then its logarithm

is expressed as
N
£(a) = L 1n b(ti;u). (6)
i=1
The general MLE problem for the mixture may then be formulated as the non-

linear constrained optimization problem:

max £(a)
a

subject to
a €t S = {uIZKj = 1;¢j 2 0}. (7)

Under the standard mixed-exponential regime, all Kj > 0, and ¢j would be
real and greater than 0. The most efficient algorithm available for the
solution of this problem is due to the joint efforts of Kaylan (1978) and
Kaylan and Harris (1981), and Mandelbaum (1982) and Mandelbaum and Harris
(1982). It is an iterative numerical procedure built around Newton's method
with additional use of second partial derivatives to speed up convergence
whenever necessary.

Because the mixing parameters may be negative in our queueing problem,
the Kaylan/Mandelbaum/Harris algorithm has been carefully altered. The basic
approach is similar, except that now the number of mixing variables has been
doubled. Since it is preferable to optimize over nonnegative variables, we
thus write Xi as the difference between its positive and negative parts.

There were two major changes necessary in the algorithm. First, additional
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SO code had to be added to make sure that the density function b(t) did not
' . become negative. A second alteration had to be made to prevent the mixing
R parameters {Ki} from drifting too far out along the real line in either
L direction.
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AN IV. ILLUSTRATIVE EXAMPLE
‘\‘ )
). ._ To show how our proposed method would work, the following test problem is
-,:\ S
.:';' X offered. It is patterned somewhat after an example in Gross and Harris
:::? :':: (pp. 300-301) and is of the M/G/1 type. Interarrivals are assumed to have
o~ mean 2, while a set of 50 service times has been generated randomly according
.'.':: - to an Erlang(2) with mean 1. These numbers are (to two decimal places):

.90, 2.14, 1.33, .52, .72, .06, .49, .53, 1.10, .63

- .31, 1.47, .91, .26, .49, .97, .24, 2.99, 2.60, 1.11

. 1.99, .41, 31, 1.58, 1.42, .84, .11, .54, 1.27, 2.05

o .51, .91, 1.78, 1.69, .78, .64, 1.62, 1.96, .93, .4l

YA 1.70, .73, .98, .71, .73, .44, 1.27, .92, .71, .78

:.; . The algorithm of the previous section was then applied to the data and
s E the resultant generalized mixed exponential turned out to be (with its '
PSR parameters rounded off for simplicity) i
b |
- l B(t) =1 - e'l‘t + 4e-3t - loe-Zt .

N The next step is to substitute B(t) into the GI/G/1 waiting-time
e
.l - equations as those presented earlier in Gross and Harris. It follows that
=

-4 W _(t) may be written as

4 ” q
Ba? - . .

o - - +. -(3.811-.

N W) =1+ke 8779t K e (3.811+.5335i)t (3.811-.5335i)t

e q 1 2 3

:_j:: o In order to guarantee real values for wq(t), k3 must be the complex

conjugate of kz. The result can then be simplified to

."':: ~': - - +, 5i - - . -, :

- W (t) = 1+Kk.e 8779t K e (3.811+.5335)t | ¢ (3.811-.5335i)t )

N q 1 2 2

:’-:: l When the work of Smith is applied and the corresponding residues obtained, we

. v

find that kl = -,5141 and k2 = .02884 + .03575i. The final expression for the
R

o stationary waiting-time CDF is thus
how 74 Woe) =1 - .51a1e” 87798 4 07381t 45768 cos 5335t - .07150 sin .5335t].
s a

%
b “p " -

:-::' n’:
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V. CONCLUDING REMARKS

It should be noted that several other methods are available in the
literature which provide similar approximating forms for the service-time
distribution. In particular, Luchak (1956) and Wishart (1959) expanded the
Stieltjes transform B¥*(s) in a Laurent series about (-u), and then truncated

after k terms to give

. k
B=(s) = )3 c (1+s/u).m .
m=1 w

(This corresponds to approximating B(t) as a mixture of Erlangs with the same
scale.) But these {cm} are not likely to sum to one, and thus the truncation
is not a true CDF. We may try instead to match moments and use boundary
conditions for estimating u and the {cm}. Unfortunately, the latter estimates
may not be the same as those from the Laurent expansion and would not neces-
sarily possess any of the major properties typically desired. Observe that
such Laurent forms are indeed members of the class Rn'

In closing now, we believe it important to view this work as a total
package: numerical, statistical and mathematical. We see our approach as a
unification of some of the most fundamental results on the GI/G/1 queue,
particularly building on the early and basic work of Smith. This and related
work which have followed are all put in total perspective by Cohen. The
numerical portions of this study began with the optimization procedure and
ultimately led to the derivation of the stationary delay CDF. But we really
cannot separate this from the attempt to find quality statistical estimators.
By virtue of the fact that the distribution selection is performed by MLE, it
is clear that this sort of complete modeling effort is very much data oriented

and therefore a potentially powerful tool for the applied queueing analyst.
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Finally, the extreme simplicity of the mathematical solution to the waiting-

time problem should be reemphasized.
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UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia’s School of Engineering and Applied Science has an undergraduate
enroliment of approximately 1,500 students with a graduate enroliment of approximately 500. There are
125 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and
Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering, Materials
Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer Science.
Within these disciplines there are well equipped laboratories for conducting highly specialized research.
All departments offer the doctorate; Biomedical and Materials Science grant only graduate degrees. In
addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 1,500 full-time faculty and a total full-time
student enroliment of about 16,000), also offers professional degrees under the schools of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of
Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the
engineering research program. The School of Engineering and Applied Science is an integral part of this
University community which provides opportunities for interdisciplinary work in pursuit of the basic goals
of education, research, and public service.
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